熱處理對鋁合金 7178 晶界腐蝕之影響

Effect of heat treatment on the intergranular corrosion of AA7178

黃財賞^{1*} Gerald S. Frankel²

Tsai-Shang Huang Gerald S. Frankel

¹中國鋼鐵公司新材料研究發展處 ²俄亥俄州立大學材料科學與工程學系 *Email:152827@mail.csc.com.tw TEL:07-8021111 ext. 2999 FAX:07-8051107 81233 高雄市小港區中鋼路 1 號

摘要

7千系鋁合金為時效硬化型之高強度鋁合 金,尤其以 T6 熱處理得到之強度最高,然而 其耐蝕性卻不佳,易遭受晶界腐蝕。文獻指 出,過時效之7千系鋁合金,如 T7或 RRA 熱 處理,雖然其強度比 T6 稍弱,卻可大幅提昇 材料之耐蝕性。本文針對鋁合金7178分別進 行 T6與 T7之熱處理,發現7178-T7之硬度雖 然較 T6 稍弱,然而其晶界腐蝕速率卻大幅降 低。材料之微觀組織指出,AA7178-T6 在晶界 上有小而連續的η相(MgZn₂),而 AA7178-T7 晶界上的η相較大且分散。因為η相的腐蝕電 位較基材低,故連續分佈的η相會加速腐蝕侵 蝕,而過時效的 AA7178-T7 雖然使得η相在晶 界上變大,但卻也間隔較遠,延緩了晶界腐蝕 的行進。

關鍵字: 鋁合金 7178、晶界腐蝕、熱處理、 極化曲線

Abstract

AA7xxx is an age-hardened aluminum alloy with the highest strength in T6 condition. However, it is very susceptible to localized corrosion, such as intergranular corrosion. It was reported that over-aged AA7xxx, such as in T7 or RRA condition, exhibits better corrosion resistance, although a little decrease in strength. AA7178 was heat treated to T6 and T7 in this study and the hardness and corrosion rate were measured. The results show that AA7178-T6 exhibited а higher hardness although AA7178-T7 had a lower corrosion rate. A high density of fine η phase (MgZn₂) particles was found in T6 grain boundaries while large and spaced η phase particles in T7 grain boundaries. The corrosion potential of η phase particles is lower than that of the matrix and would be corroded preferentially. A continuous distribution of η phase particles at the grain boundaries was found to accelerate the corrosion propagation. The over-aged AA7178-T7 had larger and more spaced η phase particles at the grain boundaries which retarded the corrosion progress.

Keywords: AA7178, intergranular corrosion, heat treatment, polarization cruve

1. 前言

晶界腐蝕是局部腐蝕的一種,其發生情形 主要有兩種:(1)活性大的二次相於晶界上析出 而被腐蝕;(2)固溶體內之耐蝕元素於晶界上缺 乏,導致晶界上的缺乏區較晶粒內部更容易被 腐蝕⁽¹⁾。前者如5千系鋁合金,β相(Mg₅Al₈) 易於晶界上連續析出,且較基材固溶體活潑, 易導致嚴重的晶界腐蝕^(2,3)。後者如2千系鋁 合金,θ相(Al₂Cu)會沿著晶界析出,使其相

Table 1 Chemical compositions of the specimen.

Alloy	Fe	Cu	Si	Mn	Mg	Cr	Zn	Ti	Al
AA7178	0.28	1.95	0.04	0.056	2.76	0.19	6.91	0.053	Bal.

鄰區域形成 Cu 缺乏區,此一 Cu 缺乏區相對 於基材是較敏感的,所以容易沿著此缺乏區產 生晶界腐蝕^(4,5)。

7 千系鋁合金之主要添加元素為 Zn 與 Mg,為時效硬化型之高強度鋁合金,但耐蝕 能力並不佳^(6,7)。鋁合金之時效硬化過程,為 過飽合固溶體(SSSS)分解而形成細微的析 出物,靠著析出物阻止差排的移動而使材料的 強度提高⁽⁶⁻¹⁵⁾。7 千系鋁合金之析出過程如下 所示:

固溶處理→淬火→SSSS→GP zone→η′→η

GP zone 為球形組織,η'與η為六角形 MgZn₂⁽⁸⁾,而7千系鋁合最常見的熱處理條件 為T6與T7。

T6 為最佳時效 (peak aged) 熱處理,可得 到最高的材料強度⁽⁶⁾,然而其耐蝕力並不佳。 為了提升其耐蝕性,於是發展出兩階段的 T7 過時效 (over-aged) 熱處理。

過時效熱處理,會使得材料強度降低,然 而許多研究指出,7千系鋁合金經過過時效熱 處理後,在耐應力腐蝕的表現上可得到大幅度 的提升。例如, Rajan等人曾觀察不同熱處理 條件的 AA7075 晶界析出物,並對照其應力腐 蝕試驗結果,發現耐應力腐蝕較佳者,其晶界 上的析出物較大且相隔較遠,屬於過時效熱處 理條件⁽¹⁶⁾。Tsai等人也曾針對 AA7475 作過類 似的研究,其發現過時效熱處理可使晶界上的 析出物變大且變得較遠,對應力腐蝕的成長有 阻礙的效果,而且腐蝕過程中產生的氫原子, 較容易在大的析出物附近形成氫氣,減少因氫 原子擴散而導致的氫脆,進而減緩應力腐蝕的 發生^(17,18)。

應力腐蝕常伴隨著晶界腐蝕的發生,然而 在7千系鋁合金上,少有純粹探討晶界腐蝕的 研究。因此,本研究針對在不施加應力的狀態 下,探討 T6 及 T7 熱處理對 AA7178 的晶界腐 蝕之影響。

2. 實驗方法

本實驗使用之 AA7178 材料來自一架報廢 的 KC-135 戰機的機翼部分,厚度 8.5 mm,其 成分經感應耦合電漿放射光譜儀(ICP-OES) 確認如 Table 1 所示。此材料經長年的飛行使 用,且在鋁合金的時效溫度不高的情形下,已 非當時的 T6 狀態,故試片重新經過固溶處理 後,再分別施以 T6 及 T7 之時效處理。熱處 理條件如 Fig. 1 所示⁽³⁾。

Fig. 1 Heat treatment cycles for AA7178.

熱處理後之材料特性由硬度試驗作確 認,硬度試驗是利用 Matsuzawa MXT50 微硬 度試驗機,測試 10 次後取平均值,壓痕器為 Vickers 方錐,荷重 300g,施力時間 30 秒。

材料的腐蝕特性由動電位極化曲線 (anodic polarization curve)的量測得知,測試 溶液為 1 M NaCl,電壓掃瞄速率為 0.1 mV/sec,試片測試前先研磨至 800 號砂紙,並 以酒精擦拭。

本材料為軋延過之板材,其晶粒呈扁平 狀,原始材料的組織及材料方向表示如 Fig. 2(a)所示,腐蝕試片的準備如 Fig. 2(b)所示, 以鑽石砂輪機切割,試片厚度介於 0.45~0.60 mm之間。試片的一面將以電化學的方式誘發 腐蝕孔洞,所以先以砂紙研磨至 800號,另一 面需觀察腐蝕是否穿透試片,故拋光至 1 μm 以方便觀察,全程以酒精研磨,降低研磨過程 中的腐蝕發生。

試片較粗糙的一面先經電化學前處理,使該面接觸1MNaCl溶液,並施以-725mVsce的定電壓2小時,可在試片表面誘發腐蝕孔洞。接著將試片置於高溼度的密閉容器中,並

Fig. 2 (a) Metallographic sections of as-received AA7178 and the nomenclature used for the plate orientations relative to the rolling direction: L (longitudinal), T (long transverse), and S (short transverse).
(b)Schematic diagram of sample orientation.

Table 2	Grain	Dimensions	of	as-received
	AA71	78.		

Orientation	AA7178
L	1040±692µm
Т	511±261µm
S	38±16µm

Table 3	Hardness of	AA7178	in	different
	tempers			

Tempers	Hardness Vickers (HV)
As-received	198
Τ6	199
Τ7	184

使抛光的一面置於容易觀察的位置,晶界腐蝕 會開始成長。以高解析數位相機每日記錄抛光 面的影像,直至觀察到腐蝕穿透試片為止。

高溼度環境是以過飽和硫酸鈉溶液置於密封的燒杯中產生,經量測其在室溫下所形成的 溼度約為 96% RH。

3. 結果與討論

3.1 材料組織與硬度

AA7178 試片為軋延板材,晶粒呈扁平 狀,如 Fig. 2(a)所示。晶粒尺寸的量測是將材 料的 L 截面及 T 截面抛光至 1 μm,並以 Keller's 腐蝕液腐蝕。晶粒在 L 及 S 方向的長 度是從 T 截面量得,而晶粒在 T 方向的長度 是從 L 截面量得,每個方向至少取 20 個量測 值,求其平均值及標準差,並列於 Table 2。 晶粒在 S 方向的長度,大約只有 L 方向的 4%, 可知材料經過極大的軋延量,晶粒十分的扁 長。經過 T6 及 T7 熱處理的試片,其晶粒大 小及形狀並無明顯的差異,仍舊保有十分扁長 的晶粒特質。

Table 3 為試片的硬度值, T6 的硬度與原始試片相當,由此推測原始材料仍舊保有 T6之強度。而 T7 屬於過時效熱處理,其硬度較

T6 低。

3.2 極化曲線

Fig. 3 為 T6 及 T7 試片在 1 M NaCl 溶液中 量測的動電位極化曲線,由試片的開放電位 (Open circuit potential)量起,漸漸往正電位 方向掃瞄。

Fig. 3 Anodic polarization curves for AA7178-T6 and AA7178-T7 in aerated 1 M NaCl solution at scan rate of 0.1 mV/sec.

開放電位指的是在該電壓下,其陽極反應 之電流密度(正值)等於陰極反應之電流密度 (負值),所以淨電流密度趨近於0,亦稱為 腐蝕電位。當電壓從腐蝕電位逐漸增加時,陽 極反應開始大於陰極反應,電流密度有陡增的 現象。一般來說,當電壓高於腐蝕電位時,其 陽極反應會趨於穩定,並反應出一較穩定之電 流密度,然而在 AA7178 的極化曲線中,不論 是 T6 或 T7, 在電壓高於腐蝕電位 200~300 mV 左右的地方,會有電流密度下降的不穩定現 象。此一不穩定現象,可能是因為材料中活性 較大的析出物被溶解(19)、晶界附近的材料被腐 蝕(20)、或者是研磨過程於表層形成的敏感層被 溶解等因素(21,22)。雖然此一不穩定現象的真正 原因尚不明朗,但從 Fig. 3 可以知道的是, T6 的不穩定位電壓範圍較 T7 來得大。

此外,T7的腐蝕電位為-764 mV_{SCE},較 T6的-810 mV_{SCE}高出許多。一般來說,腐蝕 電位愈低,代表該材料愈容易腐蝕,所以從極 化曲線可以得知,T7應有較好的耐蝕性。

3.3 晶界腐蝕速率

速率為距離與時間的關係,因此晶界腐蝕 速率,可以用晶界腐蝕的長度與其生長的時間 來表示,其中腐蝕生長時間指的是從實驗開始 到試片被腐蝕穿透的時間,試片的一面拋光到 1 μm 即是為了方便觀察晶界腐蝕是否已經穿 透試片。基本上,試片的準備方式(Fig.1(b)) 是讓腐蝕沿著晶界在 L 方向成長, 而晶粒在 L 方向十分長,超過試片的厚度,因此,其腐蝕 路徑理論上是沿著晶界筆直地由上往下生 長,亦即試片厚度即為其晶界腐蝕長度。然 而,實驗開始時需經過電化學前處理來誘發腐 蝕孔洞,所以實際的晶界腐蝕長度需將試片厚 度減掉腐蝕孔洞的深度^{(23)。}Fig. 4 即為一標準 的晶界腐蝕試片,試片上方的腐蝕孔洞是於電 化學前處理時所誘發的(23),實際的晶界腐蝕成 長是從該孔洞繼續往下長,直到其穿透試片, 而其晶界腐蝕長度可以經由橫截面的金相織 組觀察而得。

Fig. 4 Corrosion morphology including an electrochemical pretreated corrosion hole and the sharp intergranular corrosion.

實驗結果如 Fig. 5 所示,橫座標為腐蝕時 間,縱座標為晶界腐蝕長度,基本上,其斜率 即為晶界腐蝕速率。雖然實驗數據稍嫌發散, 但仍可明顯看出熱處理對晶界腐蝕速率的影 響,T6 的晶界腐蝕速率比 T7 快很多。比如說, 同樣 100 小時的時間,晶界腐蝕於 T6 試片中 可以生長約 600 μm 的距離,而在 T7 試片中 只生長了約 200 μm 的距離。

Fig. 5 Intergranular corrosion rates of AA7178 in 96% RH. T6 shows a higher rate than T7.

由以上的實驗結果顯示,AA7178 經過 T7 熱處理,其腐蝕電位較 T6 高出許多,耐蝕性 變佳,也從晶界腐蝕速率的量測得到驗證。

3.4 晶界腐蝕機構

為探討 AA7178 晶界腐蝕的成因,以及熱 處理對其之影響,於是針對材料的晶界區域進 行微觀分析。Fig. 6與Fig. 7分別為AA7178-T6 及 AA7178-T7 之晶界顯微組織,白色顆粒部 分為η相(MgZn₂),是7千系鋁合金的析出強 化相,除了散布在晶粒內,也於晶界上析出, 且以晶界上之η相顆粒較大。

一般來說,析出物或二次相顆粒通常與基 材有不同的電化學特性,可能較活潑,也可能 較鈍化,因此容易導致不均匀腐蝕。文獻指 出,MgZn2於 1M NaCl 溶液中的腐蝕電位約 為 -1050 mV_{SCE},比純鋁的腐蝕電位還要低很 多^(24, 25),因此,其相對於基材是較活潑、較易 腐蝕的。而晶界腐蝕發生的成因,即晶界上有 較基材易於被腐蝕的成分,換句話說,η相顆 粒於晶界上析出,是導致7千系鋁合金晶界腐 蝕的主要原因。

Fig. 6 Grain boundary microstructure of AA7178-T6, which has fine and continuous η phase particles along the grain boundary.

Fig. 7 Grain boundary microstructure of AA7178-T7, which has large and spaced η phase particles at the grain boundary.

比較 T6 與 T7 之晶界組織,最大的差別在 於η相的顆粒大小及分布情形。T6 熱處理使其 晶界上有小而連續的η相顆粒析出,而 T7 的 過時效熱處理,其晶界上的η相顆粒變得較 大,且顆粒間的距離相隔更遠。因為腐蝕易沿 著晶界的η相顆粒侵蝕而前進,若晶界上的η 相顆粒呈連續分布,其晶界腐蝕便容易加速前 進。因此,7千系鋁合金於T6熱處理狀態下 不耐晶界腐蝕的原因,極可能是因為小而連續 的η相顆粒於晶界上析出。相反地,若使η相 顆粒在晶界上不呈連續性的分布,則可延緩腐 蝕的速率,而T7熱處理即可達到這樣的目的。

Fig. 8 A TEM image indicating the tip of an intergranular corrosion in AA7178-T7.

Fig. 8 是利用聚焦離子顯微鏡(FIB)於晶 界腐蝕區域製作之 TEM 試片,可以清楚看到 晶界腐蝕裂縫正往下一個η相顆粒侵蝕。

4. 結論

本研究探討了 T6 及 T7 熱處理對 AA7178 晶界腐蝕之影響,並獲得以下幾點結論:

- (1)經 T6 熱處理的 AA7178,其硬度與原始材 料的硬度相當,而比經 T7 熱處理的硬度 高。
- (2)由極化曲線得知,AA7178-T6 的腐蝕電位 較AA7178-T7 低,且不穩定之電壓範圍也 較大。
- (3)經電化學處理的試片,在 96% RH 的溼度 環境下,AA7178-T6 的晶界腐蝕速率比 AA7178-T7 快很多。
- (4)AA7178-T6 晶界上有小而連續的η相顆

粒,而在 AA7178-T7 的晶界上,η相顆粒 較大且相隔較遠。

- (5)相對於鋁合金基材,η相顆粒是較活潑、易腐蝕的,因此在AA7178-T6晶界上連續分布的η相顆粒,是導致其晶界腐蝕的主要原因。
- (6)相較於 T6 熱處理, AA7178 經過 T7 之過 時效熱處理後, η相顆粒間的距離變長了, 進而延緩了晶界腐蝕的行進。

致謝

感謝 Gerald S. Frankel 教授指導。

參考文獻

- J. R. Scully: Encyclopedia of Electrochemistry - Intergranular Corrosion, Wiley-VCH, 2007.
- R. H. Jones, D. R. Baer, M. J. Danielson, J. S. Vetrano, "Role of Mg in the stress corrosion cracking of an Al-Mg alloy", Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 32A, 2001, pp.1699-1711.
- M. O. Speidel, M. V. Hyatt: Advances in Corrosion Science and Technology, Plenum Press, New York, 1972.
- E. H. Dix, R. H. Brown, W. W. Binger: The Resistance of Aluminum Alloys to Corrosion, Metals Park, OH, p.916.
- E. H. Dix: Acceleration of the Rate of Corrosion by High Constant Stress, 1940, p.11.
- I. J. Polmear: Light Alloys: metallurgy of the light metals., John Wiley & Sons, Inc., 1996.
- L. F. Mondolfo: Aluminum alloys: Structure and porperties, Buttenworths, Boston, 1976.
- 8. J. E. Hatch: Aluminum-Properties and

Physical Metallurgy, ASM, Metal Park, OH, 1983.

- R. B. Nicholson, G. Thomas, J. Nutting, "A technique for obtaining thin foils of aluminum and aluminum alloys for transmission electron metallography", British J. Applied Physics 9, 1958, pp.25-27.
- R. B. Nicholson, G. Thomas, J. Nutting, "Electron-microscopic studies of precipitation in aluminum alloys", J. Inst. Metals 87, 1959, pp.429-438.
- L. F. Mondolfo, "Structure of the aluminum-magnesium-zinc alloys", Metallurgical Reviews 153, 1971, pp.95-124.
- L. F. Mondolfo, N. A. Gjostein, D. W. Levinson, "Structural changes during the aging in an aluminum-magnesium-zinc alloy", J. Metals 8, 1956, pp.1378-1385.
- G. Thomas, J. Nutting, "The aging characteristics of aluminum alloys. Electronmicroscope studies of alloys based on the aluminum-zinc-magnesium system." J. Inst. Metals 88, 1960, pp.81-90.
- J. D. Embury, R. B. Nicholson, "Nucleation of precipitates. The Al-Zn-Mg system." Acta Met. 13, 1965, pp.403-417.
- G. W. Lorimer, R. B. Nicholson, "Further results on the nucleation of precipitates in the Al-Zn-Mg system", Acta Met. 14, 1966, pp.1009-1013.
- K. Rajan, W. Wallace, J. C. Beddoes, "Microstructural study of a high-strength stress-corrosion resistant 7075 aluminium alloy", J. Materials Science 17, 1982, pp.2817-2824.
- 17. T. C. Tsai, J. C. Chang, T. H. Chuang,

"Stress Corrosion Cracking of Superplastically Formed 7475 Aluminum Alloy", Metallurgical and Materials Transactions A 28A, 1997, pp.2113-2121.

- T. C. Tsai, T. H. Chuang, "Role of grain size on the stress corrosion cracking of 7475 aluminum alloys", Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing A225, 1997, pp.135-144.
- V. Guillaumin, G. Mankowski, "Localized corrosion of 2024 T351 aluminium alloy in chloride media", Corrosion Science 41, 1999, pp.421-438.
- S. Maitra, G. C. English, "Mechanism of Localized Corrosion of 7075 Alloy Plate", Metallurgical Transactions A 12A, 1981, pp.535-541.
- H. S. Isaacs, "Localized Surface Attack of 7xxx Series Aluminum Alloys", Proceedings of The Electrochemical Society, 2004.
- Q. Meng, G. S. Frankel, "Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys", J. Electrochem Soc. 151, 2004, pp.B271-B283.
- T.-S. Huang, G.S.Frankel, "Kinetics of sharp intergranular corrosion fissures in AA7178", Corrosion Science 49, 2007, pp.858-876.
- E. Mattson, L. O. Gullman, L. Knotsson, R. Sundberg, B. Thundal, "Mechanism of exfoliation (layer corrosion) at Al-5%Zn-1%Mg", British Corrosion Journal 6, 1971, pp.73-83.
- 25. A. J. Sedriks, A. S. Green, D. L. Novak, "Corrosion Processes and Solution Chemistry Within Stress Corrosion Cracks in Aluminum Alloys", Proceedings of NACE, 1971.